مطالعات علوم کاربردی در مهندسی

دوره ۱۱، شماره ۱، بهار ۲۰۵۲ : Print ISSN: ۲۵۳۸-۲۰۵۵

Online ISSN: ۲۴۷۶-۴۵.۷

سفحات ۱۵۱–۱۶۱ سفحات ۱۵۱–۱۶۱

راهکارهای بستهبندی پایدار مواد غذایی: کاهش اثرات زیستمحیطی سودا صادقی

دانشجوی کارشناسی ارشد، گروه علوم غذایی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

نگرانی فزاینده جهانی در مورد تخریب محیط زیست ناشی از بستهبندیهای پلاستیکی مرسوم، نیاز به راهکارهای بستهبندی پایدار مواد غذایی را برانگیخته است. این مقاله به بررسی مواد و فناوریهای نوآورانهای میپردازد که برای به حداقل رساندن اثرات زیست محیطی و در عین حال حفظ ایمنی و ماندگاری مواد غذایی طراحی شده اند. پلیمرهای زیست تخریب پذیر، پوششهای خوراکی و بستهبندیهای گیاهی از جمله جایگزینهای امیدوارکنندهای هستند که مورد بحث قرار گرفته اند. ایس مطالعه مزایا، چالشها و پتانسیل آنها را برای پذیرش در مقیاس بزرگ ارزیابی می کند. با گذار به بسته بندی سازگار با محیط زیست، صنعت مواد غذایی می تواند به طور قابل توجهی ضایعات، انتشار کربن و وابستگی به منابع تجدیدناپذیر را کاهش دهد.

كلمات كليدى: بستهبندى پايدار، مواد زيست تخريب پذير، كاهش ضايعات مواد غذايي، اثرات زيست محيطي، اقتصاد چرخشي

دوره ۱۱، شماره ۱، بهار ۱۴۰۴، صفحات ۱۵۱-۱۶۱

Sustainable Food Packaging Solutions: Reducing Environmental Impact

Sevda Sadeghi

Master's student, Department of Food Science, College of Agriculture, University of Tabriz, Tabriz, Iran

Abstract

The increasing global concern over environmental degradation caused by conventional plastic packaging has driven the need for sustainable food packaging solutions. This paper explores innovative materials and technologies designed to minimize environmental impact while maintaining food safety and shelf life. Biodegradable polymers, edible coatings, and plant-based packaging are among the promising alternatives discussed. The study evaluates their benefits, challenges, and potential for large-scale adoption. By transitioning to eco-friendly packaging, the food industry can significantly reduce waste, carbon emissions, and reliance on non-renewable resources.

Keywords: Sustainable packaging, biodegradable materials, food waste reduction, environmental impact, circular economy

1. Introduction

Food packaging plays a crucial role in preserving product quality, extending shelf life, and ensuring safety. However, traditional plastic packaging, derived from fossil fuels, contributes significantly to pollution and landfill waste. With growing consumer awareness and regulatory pressures, the demand for sustainable packaging solutions has intensified. This paper examines current advancements in eco-friendly food packaging, assessing their feasibility, environmental benefits, and challenges in implementation.[1]

In recent years, innovative materials have emerged as promising alternatives to conventional plastics. Biodegradable polymers, made from renewable resources such as corn starch and sugarcane, offer a compelling solution by breaking down naturally in the environment. These materials not only minimize waste but also reduce the carbon footprint associated with production. Furthermore, advancements in edible packaging, which can be consumed along with the food, represent a groundbreaking shift in how we perceive food preservation.[2]

Figure 1: Sustainable food packaging

Additionally, the integration of smart packaging technologies is transforming the landscape of food safety and quality monitoring. Sensors embedded in packaging can provide real-time information about temperature fluctuations, humidity levels, and even spoilage detection. This capability not only enhances food safety but also reduces food waste by ensuring that products are consumed at their peak freshness.[3,4]

Despite these advancements, several challenges remain. The production costs of sustainable materials often exceed those of traditional plastics, making widespread adoption difficult for many manufacturers. Furthermore, consumer education is essential; without proper understanding, the benefits of these eco-friendly alternatives may go unrecognized. There is also the need for robust recycling systems that can handle new materials effectively to prevent them from ending up in landfills.[5]

دوره ۱۱، شماره ۱، بهار ۱۴۰۴، صفحات ۱۶۱–۱۵۱

In conclusion, the journey towards sustainable food packaging is fraught with both exciting opportunities and significant hurdles. As research continues to evolve and consumer demand for eco-conscious products grows, the food packaging industry stands at a pivotal moment. By embracing innovation and collaborating across sectors, we can pave the way for a future where sustainability and safety coexist harmoniously, ultimately leading to a healthier planet and a more responsible food system.[6]

2. Research Concepts

2.1 Biodegradable and Compostable Materials

• Polylactic Acid (PLA):

Polylactic acid (PLA) is a bio-based material derived from corn starch or sugarcane, recognized as a sustainable option in packaging and plastic product manufacturing industries. This polymer has garnered significant attention due to its biodegradability and environmental compatibility. With the use of PLA, containers and films can be produced that are easily compostable, thereby contributing to the reduction of plastic waste and the protection of ecosystems.[7]



Figure 2: PLA's Role in Sustainable Packaging

The use of PLA in various industries promises a greener future. This material is gradually replacing traditional plastics not only due to its suitable mechanical properties but also because it is made from renewable resources. As public awareness increases regarding the environmental issues caused by non-biodegradable plastics, PLA has emerged as a smart and sustainable choice for packaging products. This shift in approach could lead to fundamental changes in the plastic industry and significantly aid in conserving natural resources and improving the quality of human life.[8]

Starch-Based Packaging:

Starch-based packaging, made from materials such as potatoes, cassava, and wheat, represents an innovative and environmentally friendly option for reducing plastic waste. These natural materials, with their high biodegradability, easily break down in nature and do not require complex recycling processes. With the increasing public awareness of environmental crises, the use of starch-based packaging is rapidly expanding, and many brands are seeking sustainable solutions to minimize their negative impacts on the planet.[9]

This type of packaging not only helps conserve natural resources but also addresses air and water pollution by reducing reliance on petroleum-based materials. Additionally, the production process for these materials consumes less energy compared to traditional plastics, resulting in a smaller carbon footprint. Given the numerous benefits of starch-based packaging, it seems that the future of the packaging industry is moving towards sustainable and intelligent choices.[10]

Mushroom Packaging:

Mycelium-based packaging is one of the remarkable innovations in the packaging industry that has turned into a sustainable and environmentally friendly solution by harnessing the natural properties of fungi. This type of packaging is produced using the mycelium structure, which is a network of fungal roots, and it is completely biodegradable. This feature makes it an ideal option for protecting products during transportation and storage, as it not only does not harm the environment but also acts as a natural insulator, preventing damage to goods.[11]

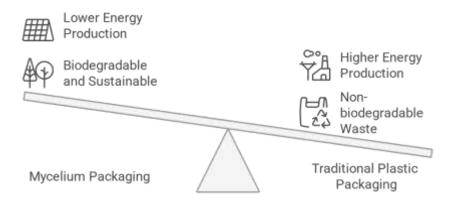


Figure 3: Choose sustainable packaging for a greener future.

The use of mycelium packaging as a replacement for traditional plastic materials not only helps reduce environmental waste but also requires less energy in its production process. Given the growing awareness of environmental issues in society, this type of packaging is rapidly gaining popularity and encouraging companies to adopt more sustainable solutions. As a result, mycelium packaging not only preserves products but also contributes to the protection of the planet, promising a greener future.[12]

2.2 Edible Packaging

• Seaweed and Algae Films:

Algal and seaweed films represent a remarkable innovation in the packaging industry, bringing astonishing capabilities. These natural and water-soluble materials not only serve as a sustainable alternative to single-use plastics but are also easily applicable in the food and beverage industries due to their edibility. With growing concerns about pollution from plastic waste, these films have gained significant attention as an environmentally friendly solution and can help reduce negative impacts on aquatic ecosystems.[13]

The use of algae and other types of seaweed in the production of edible films not only utilizes renewable resources but also allows for the creation of environmentally friendly and appealing products. These films dissolve easily in water and return to nature after consumption, causing no harm to the ecological cycle. As a result, with advancements in technology and increasing public awareness of the importance of reducing plastic waste, it is expected that this type of packaging will become a primary option in consumers' shopping baskets in the future.[14]

• Casein-Based Films:

Casein-based films, derived from milk proteins, are recognized as an innovative option in the packaging industry. These natural materials, due to their unique structure, are remarkably capable of creating strong barriers against oxygen. This feature not only helps preserve the freshness and quality of food products but also reduces the need for chemical preservatives. Given the increasing consumer preference for environmentally friendly products, the use of casein films as a sustainable and eco-friendly alternative has gained significant attention.[15]

In addition to their protective benefits, casein films are also appealing in terms of functionality and aesthetics. This type of packaging can be easily designed with various colors and patterns, enhancing the visual appeal of products. Moreover, the biocompatibility of these films allows for easy degradation after use, which contributes to promoting a culture of sustainable consumption. Overall, casein represents an innovative resource in the production of packaging films, providing a unique opportunity to combine technology with environmental protection.[16]

2.3 Recyclable and Plant-Based Plastics

• PHA (Polyhydroxyalkanoates):

PHA (Polyhydroxyalkanoates) is a type of biopolymer produced by microorganisms and is fully biodegradable. This material has gained attention as a sustainable option to replace synthetic plastics in various industries. Microbes produce PHA as an energy reserve using various carbon sources, such as sugars and fats. This process not only helps reduce environmental pollution but also aids in the conservation of natural resources.[17]

The main advantage of PHA is its biodegradability in natural environments, which makes it an ideal option for packaging and other industrial applications. With the increasing global awareness of the dangers of non-biodegradable plastics, interest in PHA has surged, and research is ongoing to improve production processes and reduce costs. This polymer can play a significant role in creating a circular economy and mitigating the negative effects of climate change, and it is recognized as an effective step towards environmental preservation.[18]

Paper and Cardboard with Bio-Coatings:

In light of the increasing concerns about environmental pollution and the excessive use of plastics, paper and cardboard with biobased coatings have emerged as a sustainable and versatile option. These materials are produced from natural and renewable resources and have a high recyclability potential. Biobased coatings, which are typically made from plant materials, provide these products with water resistance. As a result, consumers can use paper and cardboard in various conditions, including food packaging, without worrying about them being damaged.[19]

In addition to environmental benefits, these innovations enable various industries to meet the growing demand for eco-friendly products. Paper and cardboard with biobased coatings can not only serve as a substitute for plastics but also attract more attention due to their appealing designs and customization options. By combining beauty and functionality, these products allow consumers to consider the environment in their choices while still enjoying quality and performance.[20]

3. Discussion and Analysis

Sustainable packaging solutions present several advantages:

- **Reduced Carbon Footprint**: Plant-based materials emit fewer greenhouse gases.
- Waste Minimization

Reducing the carbon footprint is one of the most important steps in combating climate change, and plant-based materials play a key role in this regard. The production process of these materials is usually associated with lower greenhouse gas emissions, as plants naturally absorb carbon dioxide and store it in their tissues throughout their growth. This characteristic makes the use of plant-based materials as a substitute for synthetic and non-renewable materials not only beneficial for reducing air pollution but also supportive of the preservation of natural ecosystems.

Moreover, choosing plant-based materials across various industries, from clothing to construction, can significantly reduce energy consumption and natural resource use. By decreasing our reliance on fossil fuels and employing renewable materials, we can move towards a more sustainable future. In this context, raising awareness in society about the benefits of using these types of materials and encouraging the purchase of plant-based products can greatly contribute to changing consumer behavior and thus reducing negative impacts on the environment.

دوره ۱۱، شماره ۱، بهار ۱۴۰۴، صفحات ۱۵۱-۱۵۱

Consumer Appeal

Waste reduction is one of the fundamental challenges of the modern world, and biodegradable packaging has emerged as an effective solution in this regard. This type of packaging is designed to decompose rapidly under suitable conditions, returning natural and non-toxic materials to the environment instead of harmful residues. Compared to conventional plastics, which take years to break down in nature, biodegradable packaging has the capability to transform into its basic elements in a short period of time, thereby reducing pressure on natural resources and ecosystems.

The use of biodegradable packaging not only helps reduce waste but also promotes a sustainable culture. By choosing these types of products, consumers can play an active role in environmental protection and help prevent pollution caused by traditional plastics. This type of packaging not only contributes to the health of the planet but can also enhance the shopping experience, as consumers will feel greater satisfaction knowing the positive impact of their choices. Ultimately, this trend can lead to fundamental changes in the packaging industry and society's attitude toward waste.

In today's world, where environmental concerns have become one of the main issues for societies, environmentally conscious consumers are increasingly drawn to brands that follow sustainable practices. These consumers not only pay attention to the quality of products but also care about their impact on the environment. Brands that are committed to their social and environmental responsibilities earn the trust of this group of buyers and can establish their position in the market by offering innovative and green solutions.

The growing trend towards purchasing sustainable products provides brands with an opportunity to build their identity based on environmental values. Brands that use recycled materials and low-impact methods in their production, packaging, and distribution processes can easily align themselves with consumers. As a result, these types of brands not only help attract new customers but also retain the loyalty of existing ones, fostering a strong and meaningful relationship.

However, challenges remain:

• **Higher Production Costs**: Sustainable materials are often more expensive than plastics.

• Limited Infrastructure

In today's world, with the increasing awareness of environmental issues and the need for sustainable materials, production costs have become one of the significant challenges for manufacturers. Sustainable materials typically have a higher price than traditional plastics due to more complex production processes and resource limitations. This can affect business decision-making and deter some companies from investing in these types of materials. As a result, while consumers are seeking eco-friendly solutions, manufacturers may face pressure to maintain their profit margins.

On the other hand, as the demand for sustainable products rises, new innovations and production techniques can help reduce costs. With the development of advanced technologies and improvements in raw material supply processes, the production costs of sustainable

materials may one day reach a level comparable to that of conventional plastics. This change could provide new opportunities for companies to remain competitive in the market while also contributing to environmental preservation. Ultimately, focusing on the long-term benefits of choosing sustainable materials can lead to a reduction in dependence on non-renewable resources and the creation of a more sustainable future.

Performance Issues

Industrial composting facilities are not widely available in many areas, which can pose serious challenges for managing organic waste. While composting is one of the most effective ways to reduce waste volume and improve soil quality, the lack of appropriate infrastructure hinders the full utilization of this method. Many cities and communities simply cannot adopt this sustainable practice due to insufficient facilities for processing organic waste, resulting in waste being sent to landfills.

This limitation in infrastructure not only negatively impacts the environment but also affects social health. Citizens and businesses face greater challenges in managing their waste due to the absence of suitable facilities. Consequently, there is a critical need for investment in the development of industrial composting facilities and for increasing public awareness in this area to achieve a sustainable and effective waste management system.

The issue of performance is one of the major challenges in the use of biodegradable materials, particularly in the packaging and food protection industries. Some of these materials exhibit lower protective properties compared to traditional plastic samples due to their specific chemical and physical structures. This weakness in barrier properties can lead to the penetration of moisture, oxygen, and other external factors into the packaging, which in turn affects the quality and shelf life of the products.

Despite significant environmental benefits, these limitations cause manufacturers to exercise more caution in selecting suitable materials. While new innovations in the formulation and processing of biodegradable materials offer improvements, there remains a need for further research and development to enhance the protective properties of these materials. Thus, overcoming these challenges could facilitate the broader acceptance of these materials in the market and represent an important step towards reducing pollution caused by non-degradable plastics.

4. Recommendations

To accelerate the adoption of sustainable food packaging, the following measures are suggested:

- Government Incentives: Subsidies for companies using eco-friendly materials.
- **Research Investments**: Improving the durability and cost-effectiveness of bioplastics.
- **Consumer Education**: Raising awareness about proper disposal methods (composting vs. recycling).
- **Industry Collaboration**: Partnerships between food producers and packaging innovators.

دوره ۱۱، شماره ۱، بهار ۱۴۰۴، صفحات ۱۵۱-۱۶۱

5. Conclusion

Transitioning to sustainable food packaging is essential for reducing environmental harm. While challenges exist, advancements in biodegradable, edible, and plant-based materials offer viable alternatives. By adopting these solutions, the food industry can align with global sustainability goals, minimize waste, and meet consumer demand for greener products. Future success depends on technological innovation, policy support, and collective efforts across the supply chain. In recent years, innovative approaches have emerged, paving the way for a paradigm shift in food packaging. Companies are increasingly investing in research and development to create packaging solutions that not only protect products but also contribute positively to the planet. For instance, the introduction of mushroom-based materials and seaweed wraps showcases how nature can inspire sustainable design. These alternatives not only decompose quickly but also offer unique characteristics that can enhance the consumer experience.

Moreover, collaboration among stakeholders—from farmers to retailers—plays a crucial role in this transformation. By forging partnerships, businesses can share insights and resources, driving the adoption of eco-friendly practices throughout the supply chain. Educational campaigns aimed at raising awareness about the benefits of sustainable packaging can further empower consumers, encouraging them to make informed choices that support the environment. Governments also have a pivotal role to play. By implementing incentives and regulations that promote sustainable packaging, they can stimulate innovation and drive market demand. Financial support for startups focused on green solutions can lead to a flourishing ecosystem of creativity and sustainability.

As the world grapples with the consequences of plastic pollution and climate change, the urgency for change has never been greater. Each step towards sustainable food packaging not only helps mitigate environmental impact but also fosters a culture of responsibility and mindfulness among consumers. Ultimately, the journey towards a greener future in food packaging is not just a trend; it is a necessity that requires commitment, creativity, and collaboration from all corners of society. Embracing this challenge can lead to lasting change, ensuring that future generations inherit a healthier planet.

References

- 1. Berdonosov, V.D.; Redkolis, E.V. TRIZ evolutionary approach: Didactics. Procedia Eng. 2015, 131, 1105–1112.
- 2. Harlim, J.; Belski, I. On the effectiveness of TRIZ tools for problem finding. Procedia Eng. 2015, 131, 892–898.
- 3. Tonjang, S.; Thawesaengskulthai, N. TRIZ inventive principle in healthcare quality and innovation development. Int. J. Qual. Reliab. Manag. 2023, 40, 2664–2721.
- 4. Yao, K.-C.; Li, K.-Y.; Xu, J.-R.; Ho, W.-S.; Shen, Y.-H. Application of TRIZ Innovative System Method in Rapid Assembly of Folding Chairs. Sustainability 2022, 14, 15482.
- 5. Yao, K.-C.; Huang, W.-T.; Xu, J.-R.; Huang, S.-H.; Tsai, C.-T.; Ho, W.-S.; Liao, C.-C. Application of the TRIZ Innovation System Method to Bicycle Handlebars. Machines 2023, 11, 507.
- 6. Yao, K.-C.; Huang, S.-H.; Li, K.-Y.; Hung, H.-C.; Xu, J.-R.; Huang, W.-L.; Ho, W.-S.; Fang, J.-S.; Tseng, Y.-J. An Eco-Innovative Green Design Method using the Theory of Inventive Problem Solving and Importance–Performance Analysis Tools—A Case Study of Marker Pen Manufacturing. Sustainability 2023, 15, 14414.
- 7. Yao, K.-C.; Chen, L.-Y.; Li, K.-Y.; Chang, Y.-N.; Xu, J.-R.; Huang, W.-L.; Ho, W.-S. An Innovative Design for Cleansing, Deodorization, and Pest Control in Drain Covers: Application of the TRIZ Method and Human Factors Engineering. Machines 2024, 12, 621.

دوره ۱۱، شماره ۱، بهار ۱۴۰۴، صفحات ۱۵۱–۱۵۱

- 8. Yao, K.-C.; Cheng, C.-N.; Li, K.-Y.; Xu, J.-R.; Huang, W.-L.; Ho, W.-S.; Liao, C.-W.; Yang, S.-C.; Hsiao, H.-L.; Lin, Y.-C.; et al. Sustainable Hygiene Solutions: Developing a Foot-Operated Door Mechanism for Communal Spaces Using TRIZ and Universal Design Principles. Sustainability 2024, 16, 8415.
- 9. Yao, K.-C.; Chang, Y.-N.; Chen, L.-Y.; Li, K.-Y.; Xu, J.-R.; Ho, W.-S.; Huang, W.-L.; Chung, C.-Y.; Chen, Y.-T. Ergonomics in Bicycle Saddle Design: Application of TRIZ Innovation System Method with IPA-Kano Model Validation. Designs 2024, 8, 114.
- 10. Donnici, G.; Frizziero, L.; Liverani, A.; Leon-Cardenas, C. Design for Six Sigma and TRIZ for Inventive Design Applied to Recycle Cigarette Butts. Designs 2022, 6, 122.
- 11. Moran, D.; Ertas, A.; Gulbulak, U. A Unique Transdisciplinary Engineering-Based Integrated Approach for the Design of Temporary Refugee Housing Using Kano, HOQ/QFD, TRIZ, AD, ISM and DSM Tools. Designs 2021, 5, 31.
- 12. Lin, R.F. Examining Blood Transfusion Practices from a Human Factors and Risks Perspective. J. Healthc. Qual. 2017, 11, 24–29. Available online: https://www.airitilibrary.com/Article/Detail/a0000532-201705-201705240042-201705240042-24-29 (accessed on 15 November 2024).
- Chiou, W.K. Explication Human Factors / Ergonomics and Design Thinking for Health Worker & 13. Ching Patient 4-21. Safety. Cheng Med. J. 2022, 18, Available online: https://www.airitilibrary.com/Article/Detail/18136702-202210-202210040025-202210040025-4-21 (accessed on 15 November 2024).
- 14. Shih, Y.C.; Chi, C.F.; Lin, R.F.; Lin, R.T. Past Highlights and Future of Human Factors and Design Thinking in Taiwan. J. Manag. Syst. 2018, 25, 321–365.
- 15. Kroemer Elbert, K.E.; Kroemer, H.B.; Kroemer Hoffman, A.D. Introducing Ergonomics and Human Factors Engineering. Ergonomics 2018, 10, xiii–xviii.
- 16. Chen, C.W. To promote the view that inherently safer design practices prevent human error to supplement the Occupational Safety and Health Management system. Ind. Saf. Health 2020, 376, 45–59.
- 17. Lyu, H.C. Endeavouring to improve the intrinsic safety of equipment and facilities. Ind. Saf. Health 2012, 277, 57–62.
- 18. Wang, F.; Chen, Y.; Wang, H.; Chen, C.; Shi, B. The intrinsic safety engineering design method for the petrochemical plant. Procedia Eng. 2012, 43, 156–161.
- 19. Lyu, G.H.; Hun, C.C.; Lin, C.M.; Yang, C.C.; Chang, W.C. Development, design and safety assessment of all-vanadium liquid current storage cabinets. Ind. Saf. Health 2022, 394, 60–69.
- 20. Chen, G.W. Intrinsically Safer Design Strategies—Exploring High-Tech Process Safety and Process Equipment Integrity. Chem. Eng. 2009, 56, 61–72.